DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

This chapter summarizes a few properties of Clifford Algebra and describe its usefulness in effecting vector rotations.

3.1 Definition of Associative or Direct Product

Given two vectors **a** and **b**, the resultant is

$$\mathbf{a} + \mathbf{b} = \mathbf{c}$$

We define the associative or direct product

$$cc = (a + b)(a + b) = aa + bb + ab + ba$$

For the special case **b** perpendicular to **a**, for which we write \mathbf{b}_{\perp} , Fig. 3.1b, this may be written

$$\mathbf{c}\mathbf{c} = \mathbf{a}\mathbf{a} + \mathbf{b}_{\perp}\mathbf{b}_{\perp} {+} \mathbf{a}\mathbf{b}_{\perp} {+} \mathbf{b}_{\perp}\mathbf{a}$$

By definition, the direct product of a vector by itself is its scalar value squared. Thus, $\mathbf{cc} = c^2$, $\mathbf{b}_{\perp} \mathbf{b}_{\perp} = b_{\perp}^2$, From the Pythagorean theorem in Euclidean flat space, $c^2 = a^2 + b_{\perp}^2$. Therefore we must have

$$\mathbf{a}\mathbf{b}_{\perp} + \mathbf{b}_{\perp}\mathbf{a} = 0 \tag{3.1}$$

14 3. ASSOCIATIVE OR DIRECT PRODUCT. ROTATION OF VECTORS

which says that perpendicular vectors anticommute.

In general, **b** can be expressed as the vector sum of \mathbf{b}_{\parallel} and \mathbf{b}_{\perp} , parallel and perpendicular, respectively, to **a**. \mathbf{b}_{\parallel} is simply some scalar multiplier m times **a**. Therefore,

$$\mathbf{ab}_{\parallel} = \mathbf{a}m\mathbf{a} = m\mathbf{aa}$$

 $\mathbf{ab}_{\parallel} = \mathbf{b}_{\parallel}\mathbf{a}$ (3.2)

Eqs. (3.1) and (3.2) now define the rules of a geometric vector algebra in 2-dimensions.

3.2 Law of Cosines

Now apply the properties defined by Eqs. (3.1) and (3.2) to deduce the law of cosines. Referring to Fig. 3.1c,

 $\mathbf{c} = \mathbf{a} + \mathbf{b}$ from which aa + bb + ab + ba $\mathbf{cc} =$ \boldsymbol{b}_{\perp} \mathbf{b}_{\perp} b θ $\boldsymbol{b}_{\parallel}$ a a (b) (a) θ_c θ_b a a (c) (d)

Fig. 3.1

Decomposing \mathbf{b} in the last two terms into its components parallel and perpendicular to \mathbf{a}

$$cc = aa + bb + ab_{\parallel} + ab_{\perp} + b_{\parallel}a + b_{\perp}a$$

Using Eqs. (3.1) and (3.2)

$$c^2 = a^2 + b^2 + 2ab_{\parallel}$$
 $c^2 = a^2 + b^2 + 2ab\cos\theta$

where the quantities are now scalar values.

3.3 Law of Sines

$$\begin{array}{lll} \mathbf{b}_{\perp} & = & \mathbf{e}_{2}b\sin\theta_{c} \\ \mathbf{c}_{\perp} & = & \mathbf{e}_{2}c\sin\theta_{b} \\ \mathbf{b}_{\perp} & = & \mathbf{c}_{\perp} \rightarrow & \mathbf{e}_{2}b\sin\theta_{c} = \mathbf{e}_{2}c\sin\theta_{b} \rightarrow & b\sin\theta_{c} = c\sin\theta_{b} \end{array}$$

Thus $\frac{b}{c} = \frac{\sin \theta_b}{\sin \theta_c}$ and therefore $\frac{a}{c} = \frac{\sin \theta_a}{\sin \theta_c}, \text{ and } \frac{a}{b} = \frac{\sin \theta_a}{\sin \theta_b}$

3.4 Clifford Algebra in 3-Dimensions

Consider a position vector \mathbf{x} where \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 are unit vectors along 3 orthogonal axes.

$$\mathbf{x} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3$$

Form the direct product

$$\mathbf{xx} = (v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + v_3\mathbf{e}_3)(v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + v_3\mathbf{e}_3) = v_1^2\mathbf{e}_1\mathbf{e}_1 + v_2^2\mathbf{e}_2\mathbf{e}_2 + v_3^2\mathbf{e}_3\mathbf{e}_3$$
$$+v_1v_2(\mathbf{e}_1\mathbf{e}_2 + \mathbf{e}_2\mathbf{e}_1) + v_1v_3(\mathbf{e}_1\mathbf{e}_3 + \mathbf{e}_3\mathbf{e}_1) + v_2v_3(\mathbf{e}_2\mathbf{e}_3 + \mathbf{e}_3\mathbf{e}_2)$$

Since $\mathbf{x}^2 = v_1^2 + v_2^2 + v_3^2$

which is the Pythagorean theorem in 3-dimensions, the properties of the unit vectors must be

$$\mathbf{e}_1\mathbf{e}_1 = \mathbf{e}_2\mathbf{e}_2 = \mathbf{e}_3\mathbf{e}_3 = 1$$
 $\mathbf{e}_1\mathbf{e}_2 + \mathbf{e}_2\mathbf{e}_1 = 0$, etc. That is, $\mathbf{e}_i\mathbf{e}_j = -\mathbf{e}_j\mathbf{e}_i$

The unit vectors are called the generators of the geometric algebra and in this case we use Cartesian unit vectors. A convenient way to generate all of the independent combinations in the algebra is to form the product

$$\left(1+\mathbf{e}_{1}\right)\left(1+\mathbf{e}_{2}\right)\left(1+\mathbf{e}_{3}\right)=\underset{\mathrm{scalar}}{1}+\mathbf{e}_{1}+\underset{\mathrm{vector}}{\mathbf{e}_{2}}+\mathbf{e}_{3}+\underbrace{\mathbf{e}_{1}\mathbf{e}_{2}+\mathbf{e}_{2}\mathbf{e}_{3}+\mathbf{e}_{3}\mathbf{e}_{1}}_{\mathrm{bivector}}+\underset{\mathrm{pseudo-scalar}}{\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}}$$

The result is an 8 element algebra. The elements consist of a scalar, 3 unit vectors that define lines, 3 bivectors that define oriented planes and a trivector $\mathbf{e} \equiv \mathbf{e_1}\mathbf{e_2}\mathbf{e_3}$ that corresponds to a volume. It has the property $\mathbf{ee} = -1$ and is called a pseudo-scalar. It also changes sign under inversion since $(-\mathbf{e_1})(-\mathbf{e_2})(-\mathbf{e_3}) = -\mathbf{e_1}\mathbf{e_2}\mathbf{e_3}$.

Note that the unit bivectors anticommute. For example, $(\mathbf{e}_1\mathbf{e}_2)(\mathbf{e}_2\mathbf{e}_3) = (\mathbf{e}_2\mathbf{e}_1\mathbf{e}_3\mathbf{e}_2) = -(\mathbf{e}_2\mathbf{e}_3)(\mathbf{e}_1\mathbf{e}_2)$. In this sense, they behave like vectors; however, their squares are -1. For example, $\mathbf{e}_1\mathbf{e}_2\mathbf{e}_1\mathbf{e}_2 = -\mathbf{e}_1\mathbf{e}_1\mathbf{e}_2\mathbf{e}_2 = -1$.

When negative values for each of the generators are included, the 16 elements form a group. Define, $\mathbf{e} \equiv \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3$.

Note that the associative product of **e** with a bivector is a vector. For example:

$$\mathbf{e}\mathbf{e}_1\mathbf{e}_2 = \mathbf{e}_1\mathbf{e}_2\mathbf{e}_3\mathbf{e}_1\mathbf{e}_2 = \mathbf{e}_2\mathbf{e}_3\mathbf{e}_2 = \mathbf{e}_3.$$

Therefore, a general bivector

$$\mathbf{B} = \mathbf{e}_1 \mathbf{e}_2 B_{12} + \mathbf{e}_2 \mathbf{e}_3 B_{23} + \mathbf{e}_3 \mathbf{e}_1 B_{31}$$

may be written

$$\mathbf{B} = \mathbf{e} \left[-\mathbf{e} \left(\mathbf{e}_1 \mathbf{e}_2 B_{12} + \mathbf{e}_2 \mathbf{e}_3 B_{23} + \mathbf{e}_3 \mathbf{e}_1 B_{31} \right) \right]$$

$$\mathbf{B} = \mathbf{e} \left(\mathbf{e}_3 B_{12} + \mathbf{e}_1 B_{23} + \mathbf{e}_2 B_{31} \right)$$

Since $\mathbf{e}\mathbf{e}_3 = \mathbf{e}_1\mathbf{e}_2$, $\mathbf{e}\mathbf{e} = \mathbf{e}_2\mathbf{e}_3$, $\mathbf{e}\mathbf{e}_2 = \mathbf{e}_3\mathbf{e}_1$. $\mathbf{e}^2 = -1$. Thus $\mathbf{B} = \mathbf{e}\mathbf{v}$, where \mathbf{v} is a vector.

A linear combination of the elements of the algebra with arbitrary scalar multipliers, real or complex, is called a multivector. Thus, a space-like multivector may be written

$$\mathbf{M} = S + \mathbf{v} + \mathbf{e}\mathbf{v} + S'\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3$$

We now form the direct product of 2 vectors and express the result in terms of the vector components: $\mathbf{u}\mathbf{v} = (\mathbf{u}\mathbf{v} + \mathbf{v}\mathbf{u})/2 + (\mathbf{u}\mathbf{v} - \mathbf{v}\mathbf{u})/2$

Express the vectors \mathbf{u}, \mathbf{v} in terms of $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$

$$\mathbf{vu} = (v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + v_3\mathbf{e}_3)(u_1\mathbf{e}_1 + u_2\mathbf{e}_2 + u_3\mathbf{e}_3)$$

$$= v_1u_1 + v_1u_2\mathbf{e}_1\mathbf{e}_2 + v_2u_1\mathbf{e}_2\mathbf{e}_1 + v_2u_2 + v_1u_3\mathbf{e}_1\mathbf{e}_3$$

$$+ v_3u_1\mathbf{e}_3\mathbf{e}_1 + v_3u_3 + v_2u_3\mathbf{e}_2\mathbf{e}_3 + v_3u_2\mathbf{e}_3\mathbf{e}_2$$

$$\mathbf{uv} = v_1u_1 + u_2v_1\mathbf{e}_2\mathbf{e}_1 + u_1v_2\mathbf{e}_1\mathbf{e}_2 + v_2u_2 + u_3v_1\mathbf{e}_3\mathbf{e}_1$$

$$+ u_1v_3\mathbf{e}_1\mathbf{e}_3 + v_3u_3 + u_3v_2\mathbf{e}_3\mathbf{e}_2 + u_2v_3\mathbf{e}_2\mathbf{e}_3$$

Thus,
$$\frac{1}{2} (\mathbf{v}\mathbf{u} + \mathbf{u}\mathbf{v}) = \mathbf{v} \bullet \mathbf{u} = v_1 u_1 + v_2 u_2 + v_3 u_3$$

and $\frac{1}{2} (\mathbf{v}\mathbf{u} - \mathbf{u}\mathbf{v}) = \mathbf{v} \wedge \mathbf{u}$

$$= \frac{1}{2} [v_1 u_2 (\mathbf{e}_1 \mathbf{e}_2 - \mathbf{e}_2 \mathbf{e}_1) + v_1 u_3 (\mathbf{e}_1 \mathbf{e}_3 - \mathbf{e}_3 \mathbf{e}_1) + v_2 u_3 (\mathbf{e}_2 \mathbf{e}_3 - \mathbf{e}_3 \mathbf{e}_2) + u_1 v_2 (\mathbf{e}_1 \mathbf{e}_2 - \mathbf{e}_2 \mathbf{e}_1) + u_1 v_3 (\mathbf{e}_1 \mathbf{e}_3 - \mathbf{e}_3 \mathbf{e}_1) + u_2 v_3 (\mathbf{e}_2 \mathbf{e}_3 - \mathbf{e}_3 \mathbf{e}_2)]$$

$$= (v_1 u_2 - u_1 v_2) \mathbf{e}_1 \mathbf{e}_2 + (v_1 u_3 - u_1 v_3) \mathbf{e}_1 \mathbf{e}_3 + (v_2 u_3 - u_2 v_3) \mathbf{e}_2 \mathbf{e}_3$$

The latter may be written

$$\mathbf{v} \wedge \mathbf{u} = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 [(v_1 u_2 - u_1 v_2) \mathbf{e}_3 + (v_3 u_1 - v_1 u_3) \mathbf{e}_2 + (v_2 u_3 - u_2 v_3) \mathbf{e}_1]$$

The Gibbs cross product is

$$\mathbf{v} \times \mathbf{u} = \mathbf{e}_1 (v_2 u_3 - v_3 u_2) + \mathbf{e}_2 (v_3 u_1 - u_3 v_1) + \mathbf{e}_3 (v_1 u_2 - u_1 v_2)$$

Therefore,

$$\mathbf{v} \wedge \mathbf{u} = -\mathbf{e} (\mathbf{v} \times \mathbf{u})$$
 or $\mathbf{e} (\mathbf{v} \wedge \mathbf{u}) = \mathbf{v} \times \mathbf{u}$ $\mathbf{e} = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3$ $\mathbf{e} \mathbf{e} = -1$

where $\mathbf{v} \times \mathbf{u}$ is the Gibbs vector product.

Thus, the quantity $\mathbf{e} \equiv \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3$ times the wedge product of 2 vectors defines a vector perpendicular to the plane of the 2 vectors. The wedge product of 2 vectors is the sum of 3 bivectors, that is, 3 directed planes¹. In 4 dimensions, it would be the sum of 6 bivectors or 6 directed planes. Thus Clifford Algebra is a more general geometric

¹The "direction" of a directed plane is defined by $\mathbf{e_1} \times \mathbf{e_2}$ where looking down $\mathbf{e_1}$ rotates 90° CC to define a direction perpendicular to $\mathbf{e_1}\mathbf{e_2}$ in the direction of a right hand screw turning from $\mathbf{e_1}$ to $\mathbf{e_2}$, the usual right hand coordinate system.

algebra than vector analysis, that is, the Gibbs algebra since the Gibbs cross product in 4 dimensions and higher is not defined.

Direct Product of (vec)(biv)

$$(v_{1}\mathbf{e}_{1} + v_{2}\mathbf{e}_{2} + v_{3}\mathbf{e}_{3}) (B_{12}\mathbf{e}_{1}\mathbf{e}_{2} + B_{31}\mathbf{e}_{3}\mathbf{e}_{1} + B_{23}\mathbf{e}_{2}\mathbf{e}_{3})$$

$$= v_{1}B_{12}\mathbf{e}_{2} - v_{1}B_{31}\mathbf{e}_{3} + v_{1}B_{23}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}$$

$$-v_{2}B_{12}\mathbf{e}_{1} + v_{2}B_{31}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3} + v_{2}B_{23}\mathbf{e}_{3}$$

$$+v_{3}B_{12}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3} + v_{3}B_{31}\mathbf{e}_{1} - v_{3}B_{23}\mathbf{e}_{2}$$

$$= (v_{3}B_{31} - v_{2}B_{12})\mathbf{e}_{1} + (v_{1}B_{12} - v_{3}B_{23})\mathbf{e}_{2} + (v_{2}B_{23} - v_{1}B_{31})\mathbf{e}_{3}$$

$$+ (v_{1}B_{23} + v_{2}B_{31} + v_{3}B_{12})\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}$$

$$= \mathbf{v} \wedge \mathbf{B} + \mathbf{v} \bullet \mathbf{B} = \mathbf{B} \times \mathbf{v} + \mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3} (\mathbf{v} \bullet \mathbf{B})$$

3.5 Rotation of Vectors

Clifford Algebra provides a simple operator for rotating vectors. To obtain this operator we first find a procedure for reflecting a vector \mathbf{b} in a plane (mirror) containing another vector \mathbf{a} . The mirror is perpendicular to the plane of \mathbf{a} and \mathbf{b} . Fig. 3.2a. The inverse of a vector is defined by $\mathbf{a}^{-1}\mathbf{a} = 1$. If \mathbf{a} is a unit vector defined by $\mathbf{a}\mathbf{a} = 1$, then $\mathbf{a}^{-1} = \mathbf{a}$. The reflection of \mathbf{b} through \mathbf{a} to obtain \mathbf{b}' is achieved by forming the combination

$$\mathbf{b}' = \mathbf{a}^{-1}\mathbf{b}\mathbf{a} = \mathbf{a}^{-1}\mathbf{b}_{\parallel}\mathbf{a} - \mathbf{a}^{-1}\mathbf{b}_{\perp}\mathbf{a} = \mathbf{a}^{-1}\mathbf{a}\mathbf{b}_{\parallel} + \mathbf{a}^{-1}\mathbf{a}\mathbf{b}_{\perp} = \mathbf{b}_{\parallel} + \mathbf{b}_{\perp}$$

 $\mathbf{a}\mathbf{b}_{\perp} = -\mathbf{b}_{\perp}\mathbf{a}$ by anticommutativity of orthogonal vectors in Clifford algebra.

To rotate a vector by an angle φ draw 2 vectors **a** and **b** separated by angle $\varphi/2$ as shown in Fig. 3.2a. **a** and **b** may be unit vectors. We wish to rotate vector **v** into vector **v'**. Let vector **v** make an angle θ_1 with **a** where $\theta_1 < \varphi$. Reflect **v** through angle θ_1 so that it becomes vector **v''**. Reflect **v''** in **b** through angle $\theta_2 = \varphi/2 - \theta_1$. The net reflection of **v** is then through an angle $2\theta_1 + 2(\varphi/2 - \theta_1) = \varphi$. Mathematically, the two reflections are described by

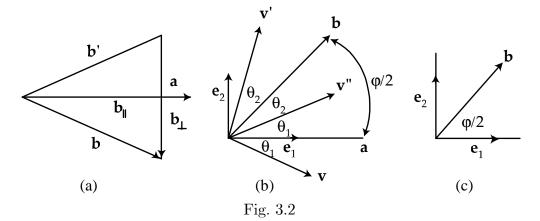
$$\mathbf{v}'' = \mathbf{a}^{-1}\mathbf{v}\mathbf{a} \tag{3.3}$$

$$\mathbf{v}' = \mathbf{b}^{-1}\mathbf{v}''\mathbf{b} \tag{3.4}$$

Substituting the result of the first reflection into the second reflection

$$\mathbf{v}' = \mathbf{b}^{-1}\mathbf{a}^{-1}\mathbf{v}\mathbf{a}\mathbf{b}$$

 $\mathbf{v}' = \mathbf{b}\mathbf{a}\mathbf{v}\mathbf{a}\mathbf{b}$ (3.5)



It is convenient to let $\mathbf{a} = \mathbf{e}_1$ and to express \mathbf{b} in terms of \mathbf{e}_1 and the unit vector \mathbf{e}_2 perpendicular to \mathbf{e}_1 . Let $\varphi/2$ be the angle between \mathbf{e}_1 and \mathbf{b} , where φ is the angle through which we wish to rotate the vector \mathbf{v} .

Thus,

$$\mathbf{b}_{\parallel} = \mathbf{e}_1 \cos \varphi / 2$$
 and $\mathbf{b}_{\perp} = \mathbf{e}_2 \sin \varphi / 2$

and therefore,

$$\mathbf{e}_1 \mathbf{b} = \mathbf{e}_1 \left(\mathbf{e}_1 \cos \varphi / 2 + \mathbf{e}_2 \sin \varphi / 2 \right) = \cos \varphi / 2 + \mathbf{e}_1 \mathbf{e}_2 \sin \varphi / 2 \tag{3.6}$$

which can be written

$$\mathbf{e}_1\mathbf{b} = \mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\varphi/2}$$
, since $(\mathbf{e}_1\mathbf{e}_2)(\mathbf{e}_1\mathbf{e}_2) = -1$

Likewise,

$$\mathbf{b}\mathbf{e}_1 = (\mathbf{e}_1 \cos \varphi/2 + \mathbf{e}_2 \sin \varphi/2) \,\mathbf{e}_1 = \cos \varphi/2 - \mathbf{e}_1 \mathbf{e}_2 \sin \varphi/2 = \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi/2} \tag{3.7}$$

Substituting these expressions in Eq. (3.5), we obtain

$$\mathbf{v}' = \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi/2} \mathbf{v} \mathbf{e}^{\mathbf{e}_1 \mathbf{e}_2 \varphi/2} \tag{3.8}$$

Eq. (3.8) specifies a counter clockwise rotation of \mathbf{v} through an angle φ about axis \mathbf{e}_3 perpendicular to the plane of \mathbf{e}_1 and \mathbf{e}_2 . To rotate the vector \mathbf{v} clockwise through φ , change φ to $-\varphi$ in the above expressions.

The bilateral operators in Eq. (3.8) may be replaced by the unilateral operator

$$\mathbf{v}' = \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi/2} \mathbf{v} \mathbf{e}^{\mathbf{e}_1 \mathbf{e}_2 \varphi/2} = \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi} \mathbf{v}$$
(3.9)

when \mathbf{v} lies in the plane of $\mathbf{e}_1\mathbf{e}_2$. Thus, $\mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}$ operating left to right on \mathbf{v} rotates it at an angle φ counter-clockwise about \mathbf{e}_3 . $\mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\varphi}$ operating right to left does the same. To rotate clockwise, change the sign of φ . To justify Eq. (3.9), use Eq. (3.8) to rotate the vector $\mathbf{v} = v_x\mathbf{e}_1 + v_y\mathbf{e}_2$ into $\mathbf{v}' = v_x'\mathbf{e}_1 + v_y'\mathbf{e}_2$

Consider

$$v_1 \mathbf{e}_1 \mathbf{e}^{\mathbf{e}_1 \mathbf{e}_2 \varphi/2} = v_1 \mathbf{e}_1 \left(\cos \varphi/2 + \mathbf{e}_1 \mathbf{e}_2 \sin \varphi/2 \right) = v_1 \mathbf{e}_1 \left[\cos \varphi/2 + \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_1 \left(\sin \varphi/2 \right) \mathbf{e}_1 \right]$$

$$= \left(\cos \varphi/2 + \mathbf{e}_1 \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_1 \sin \varphi/2 \right) v_1 \mathbf{e}_1 = \left(\cos \varphi/2 - \mathbf{e}_1 \mathbf{e}_2 \sin \varphi/2 \right) v_1 \mathbf{e}_1$$

$$= \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi/2} v_1 \mathbf{e}_1$$

Likewise
$$v_y \mathbf{e}_2 \mathbf{e}^{\mathbf{e}_1 \mathbf{e}_2 \varphi/2} = \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi/2} v_y \mathbf{e}_2$$

So $(v_x \mathbf{e}_1 + v_y \mathbf{e}_2) \mathbf{e}^{\mathbf{e}_1 \mathbf{e}_2 \varphi/2} = \mathbf{e}^{-\mathbf{e}_1 \mathbf{e}_2 \varphi/2} (v_x \mathbf{e}_1 + v_y \mathbf{e}_2)$

Therefore
$$\mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{v}\mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\varphi/2} = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}(v_x\mathbf{e}_1 + v_y\mathbf{e}_2) = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{v}$$

 $= \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\mathbf{v} = \mathbf{v}' = v'_x\mathbf{e}_1 + v'_y\mathbf{e}_2$

As an example, let us use Eq. (3.9) to rotate counterclockwise through an angle φ a vector $\mathbf{x} = \mathbf{e}_1 a \cos \alpha + \mathbf{e}_2 a \sin \alpha$, making an angle α with respect to the \mathbf{e}_1 axis. This will yield two trigonometric addition formulas.

$$\mathbf{x}' = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\mathbf{x} = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi} \left(\mathbf{e}_1 a \cos \alpha + \mathbf{e}_2 a \sin \alpha \right)$$

$$= \mathbf{e}_1 a \cos \alpha \left(\cos \varphi - \mathbf{e}_1\mathbf{e}_2 \sin \varphi \right) + \mathbf{e}_2 a \sin \alpha \left(\cos \varphi - \mathbf{e}_1\mathbf{e}_2 \sin \varphi \right)$$

$$= a \left[\mathbf{e}_1 \left(\cos \alpha \cos \varphi - \sin \alpha \sin \varphi \right) + \mathbf{e}_2 \left(\cos \alpha \sin \varphi + \sin \alpha \cos \varphi \right) \right]$$

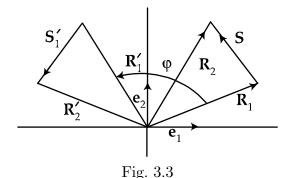
$$= \mathbf{e}_1 a \cos \left(\alpha + \varphi \right) + \mathbf{e}_2 a \sin \left(\alpha + \varphi \right)$$

Thus

$$\cos(\alpha + \varphi) = \cos\alpha\cos\varphi - \sin\alpha\sin\varphi$$

$$\sin(\alpha + \varphi) = \cos\alpha\sin\varphi + \sin\alpha\cos\varphi$$

If $\alpha = 0$, $\mathbf{x}' = a \left(\mathbf{e}_1 \cos \varphi + \mathbf{e}_2 \sin \varphi \right)$



To rotate an arbitrary vector \mathbf{S} counterclockwise through an angle φ and whose end points are specified by \mathbf{R}_1 and \mathbf{R}_2 , it is necessary to rotate the two vectors defining the end points of \mathbf{S} through the angle φ . Thus by Fig. 3.3, one has

$$\begin{array}{rcl} \mathbf{R}_1 + \mathbf{S} & = & \mathbf{R}_2 & \mathbf{S} = \mathbf{R}_2 - \mathbf{R}_1 \\ \mathbf{R}_1' + \mathbf{S}' & = & \mathbf{R}_2' & \mathbf{S}' = \mathbf{R}_2'' - \mathbf{R}_1' \\ & \mathbf{R}_1' & = & \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\mathbf{R}_1 \\ & \mathbf{R}_2' & = & \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\mathbf{R}_2 \\ & \mathbf{R}_2' - \mathbf{R}_1' & = & \mathbf{S}' = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\left(\mathbf{R}_2 - \mathbf{R}_1\right) = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\mathbf{S} \\ & \mathbf{S}' & = & \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi}\mathbf{S} \end{array}$$

To verify that the scalar product is invariant, that is, $\mathbf{S}' \cdot \mathbf{S}' = \mathbf{S} \cdot \mathbf{S}$, form

Thus

The rotation of a multivector about \mathbf{e}_3 is by definition the rotation about \mathbf{e}_3 of the individual vectors that constitute the multivector. To rotate a multivector \mathbf{M} about \mathbf{e}_3 counterclockwise through an angle φ about \mathbf{e}_3 , form

$$\mathbf{M}^{'} = \mathbf{L}^{-1}\mathbf{M}\mathbf{L}$$
 $\mathbf{L} = \mathbf{e}^{\mathbf{e}_{1}\mathbf{e}_{2}\varphi/2}$

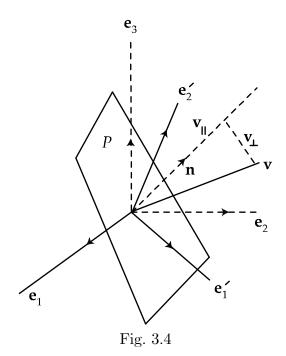
It is clear that we can always sandwich $e^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}e^{\mathbf{e}_1\mathbf{e}_2\varphi/2}=1$ between the elements of a multivector. For example, for the rotation of a bivector $\mathbf{v}\mathbf{u}$

$$\begin{array}{lcl} \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{v}\mathbf{u}\mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\varphi/2} & = & \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{v}\mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\varphi/2}\mathbf{u}\mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\varphi/2} \\ & = & \mathbf{v}^{'}\mathbf{u}^{'} \end{array}$$

3.6 Rotation about an Arbitrary Axis n

We now show that the rotation of a vector \mathbf{v} through an angle φ about an arbitrary axis specified by the unit vector \mathbf{n} is given by:

$$\mathbf{v}' = \mathbf{e}^{-\mathbf{e}\mathbf{n}\varphi/2}\mathbf{v}\mathbf{e}^{\mathbf{e}\mathbf{n}\varphi/2} \tag{3.10}$$



To obtain this result, draw a plane through the origin and perpendicular to \mathbf{n} . Decompose \mathbf{v} into a component \mathbf{v}_{\perp} perpendicular to \mathbf{n} and a component $a\mathbf{n} = \mathbf{v}_{\parallel}\mathbf{n}$ parallel to \mathbf{n} . Let \mathbf{e}'_1 and \mathbf{e}'_2 through the origin define two orthogonal axes in the plane. The rotation through an angle φ of the component \mathbf{u} perpendicular to \mathbf{n} is given by

$$\mathbf{v}_{\perp}' = \mathbf{e}^{-\mathbf{e}_{1}'\mathbf{e}_{2}'\varphi/2}\mathbf{v}_{\perp}\mathbf{e}^{\mathbf{e}_{1}'\mathbf{e}_{2}'\varphi/2} \tag{3.11}$$

 \mathbf{e}_1' and \mathbf{e}_2' can be specified in terms of direction cosines with respect to the axes $\mathbf{e}_1.\mathbf{e}_2.\mathbf{e}_3.$

Then

$$\mathbf{e}_{1}'\mathbf{e}_{2}' = (\mathbf{e}_{1}\cos\alpha_{1} + \mathbf{e}_{2}\cos\beta_{1} + \mathbf{e}_{3}\cos\gamma_{1})(\mathbf{e}_{1}\cos\alpha_{2} + \mathbf{e}_{2}\cos\beta_{2} + \mathbf{e}_{3}\cos\gamma_{2})$$

$$= \mathbf{e}_{1}\mathbf{e}_{1}\cos\alpha_{1}\cos\alpha_{2} + \mathbf{e}_{2}\mathbf{e}_{2}\cos\beta_{1}\cos\beta_{2} + \mathbf{e}_{3}\mathbf{e}_{3}\cos\gamma_{1}\cos\gamma_{2}$$

$$+ \mathbf{e}_{1}\mathbf{e}_{2}(\cos\alpha_{1}\cos\beta_{2} - \cos\alpha_{2}\cos\beta_{1}) + \mathbf{e}_{1}\mathbf{e}_{3}(\cos\alpha_{1}\cos\gamma_{2} - \cos\alpha_{2}\cos\gamma_{1})$$

$$+ \mathbf{e}_{2}\mathbf{e}_{3}(\cos\beta_{1}\cos\gamma_{2} - \cos\beta_{2}\cos\gamma_{1})$$

Since e_1 and e_2 are orthogonal, the scalar product is zero:

$$\mathbf{e}_1' \cdot \mathbf{e}_2' = \cos \alpha_1 \cos \alpha_2 + \cos \beta_1 \cos \beta_2 + \cos \gamma_1 \cos \gamma_2 = 0$$

The unit vector **n** is given by

$$\mathbf{n} = \mathbf{e}_1' \times \mathbf{e}_2' = -\mathbf{e} \left(\mathbf{e}_1' \wedge \mathbf{e}_2' \right) = \mathbf{e}_1 \left(\cos \beta_1 \cos \gamma_2 - \cos \beta_2 \cos \gamma_1 \right)$$

$$+\mathbf{e}_{2}(\cos \gamma_{1}\cos \alpha_{2} - \cos \alpha_{1}\cos \gamma_{2}) + \mathbf{e}_{3}(\cos \alpha_{1}\cos \beta_{2} - \cos \alpha_{2}\cos \beta_{1})$$
$$= \mathbf{e}_{1}\cos \alpha + \mathbf{e}_{2}\cos \beta + \mathbf{e}_{3}\cos \gamma$$

where α , β , and γ are the direction cosines of \mathbf{n} . $\mathbf{e} = \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3$. The product $\mathbf{e}'_1 \mathbf{e}'_2$ may then be written

$$\mathbf{e}_{1}'\mathbf{e}_{2}' = \mathbf{e}_{1}\mathbf{e}_{2}\cos\gamma + \mathbf{e}_{1}\mathbf{e}_{3}\cos\beta + \mathbf{e}_{2}\mathbf{e}_{3}\cos\alpha$$

$$= \mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}\left(\mathbf{e}_{1}\cos\alpha + \mathbf{e}_{2}\cos\beta + \mathbf{e}_{3}\cos\gamma\right)$$

$$= \mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}\mathbf{n} = \mathbf{e}\mathbf{n}$$

$$\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}\mathbf{n} = \mathbf{n}\mathbf{e}_{1}\mathbf{e}_{2}\mathbf{e}_{3}$$

Note that

Thus,
$$\mathbf{e_1e_2e_3n} = \mathbf{e_1e_2e_3ne_1e_2e_3n} = \mathbf{e_1e_2e_3e_1e_2e_3n}^2 = (\mathbf{e_1e_2e_3})^2 \mathbf{n}^2 = -1$$

Since, $\mathbf{nn} = 1$
 $\mathbf{nn} = (\mathbf{e_1}\cos\alpha + \mathbf{e_2}\cos\beta + \mathbf{e_3}\cos\gamma) (\mathbf{e_1}\cos\alpha + \mathbf{e_2}\cos\beta + \mathbf{e_3}\cos\gamma)$
 $= \mathbf{e_1e_1}\cos^2\alpha + \mathbf{e_2e_2}\cos^2\beta + \mathbf{e_3e_3}\cos^2\gamma + (\mathbf{e_1e_2} + \mathbf{e_2e_1})\cos\alpha\cos\beta$
 $+ (\mathbf{e_1e_3} + \mathbf{e_3e_1})\cos\gamma + (\mathbf{e_2e_3} + \mathbf{e_3e_2})\cos\beta$
 $= \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$

Note that
$$\mathbf{n} = \mathbf{e}^{-\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3\mathbf{n}\varphi/2}\mathbf{n}\mathbf{e}^{\mathbf{e}_1\mathbf{e}_2\mathbf{e}_3\mathbf{n}\varphi/2}$$

$$= \left(\cos\frac{\varphi}{2} - \mathbf{e}\mathbf{n}\sin\frac{\varphi}{2}\right)\mathbf{n}\left(\cos\frac{\varphi}{2} - \mathbf{e}\mathbf{n}\sin\frac{\varphi}{2}\right)$$

$$= \mathbf{n}\left(\cos\frac{\varphi}{2} - \mathbf{e}\mathbf{n}\sin\frac{\varphi}{2}\right)\left(\cos\frac{\varphi}{2} - \mathbf{e}\mathbf{n}\sin\frac{\varphi}{2}\right) = \mathbf{n}$$
Thus, for $a = \mathbf{v} \cdot \mathbf{n} = a\mathbf{v}_{\parallel}$

$$\mathbf{v}' = \mathbf{e}^{-\mathbf{e}\mathbf{n}\varphi/2}(a\mathbf{n} + \mathbf{v}_{\perp})\mathbf{e}^{\mathbf{e}\mathbf{n}\varphi/2} = \mathbf{e}^{-\mathbf{e}\mathbf{n}\varphi/2}a\mathbf{n}\mathbf{e}^{\mathbf{e}\mathbf{n}\varphi/2} + \mathbf{e}^{\mathbf{e}\mathbf{n}\varphi/2}\mathbf{v}_{\perp}\mathbf{e}^{\mathbf{e}\mathbf{n}\varphi/2}$$

$$\mathbf{v}' = a\mathbf{n} + \mathbf{e}^{-\mathbf{e}\mathbf{n}\varphi}\mathbf{v}_{\perp} = a\mathbf{v}_{\parallel} + \mathbf{e}^{-\mathbf{e}\mathbf{n}\varphi}\mathbf{v}_{\perp}$$
(3.12)