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DEFINITION OF ASSOCIATIVE OR DIRECT
PRODUCT AND ROTATION OF VECTORS

This chapter summarizes a few properties of Clifford Algebra and describe its use-
fulness in effecting vector rotations.

3.1 Definition of Associative or Direct Product
Given two vectors a and b, the resultant is
a+b=c
We define the associative or direct product
cc=(a+b)(a+b)=aa+bb+ab+ba

For the special case b perpendicular to a, for which we write b, , Fig. 3.1b, this may
be written
cc=aa+b; b, +ab,+b a

By definition, the direct product of a vector by itself is its scalar value squared.
Thus, cc = ¢, b; b, =b%, . From the Pythagorean theorem in Euclidean flat space,
? = a®> + 1% . Therefore we must have

abL+bLa:0 (31)
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which says that perpendicular vectors anticommute.

In general, b can be expressed as the vector sum of by and b,, parallel and
perpendicular, respectively, to a. by is simply some scalar multiplier m times a.
Therefore,

ab, = ama = maa
ab|| = bHa (32)

Egs. (3.1) and (3.2) now define the rules of a geometric vector algebra in 2-dimensions.

3.2 Law of Cosines

Now apply the properties defined by Egs. (3.1) and (3.2) to deduce the law of cosines.
Referring to Fig. 3.1c,

¢c = a+b
from which cc = aa-+ bb+ab+ ba

Fig. 3.1
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Decomposing b in the last two terms into its components parallel and perpendicular

to a
cc=aa+bb+ab;+ab; +bja+b.a

Using Egs. (3.1) and (3.2)

2 :a2+b2—|—2abH ? =a®+b%+ 2abcosb

where the quantities are now scalar values.

3.3 Law of Sines

b, = esbsind.
c, = eycsinb,
b, = c; — eybsinf. =eycsinfy, — bsinf. = csinb,

b sin 6
Thus - = - b
c sin 4.
a sind, a sinf,
and therefore - = — , and - = —
c sin @, b sind,

3.4 Clifford Algebra in 3-Dimensions

Consider a position vector x where e;, e, e3 are unit vectors along 3 orthogonal

axes.
X = V1€ + V2€q + V3es

Form the direct product

2 2 2
xx = (vie; + vaes + v3e3) (Vi€ + vaes + v3e3) = vieje; + vyesey + vieses
+v10y (€169 + €3€1) + v1U3 (€1e3 + eseq) + v (€ze3 + €3ey)
Since x? = v? 4+ v3 + v3
which is the Pythagorean theorem in 3-dimensions, the properties of the unit vectors

must be

eje; =exey =ezeg3 =1 ejey +eze; =0, etc. That is, e;e; = —eje;
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The unit vectors are called the generators of the geometric algebra and in this case
we use Cartesian unit vectors. A convenient way to generate all of the independent
combinations in the algebra is to form the product

(1 —+ el) (1 —+ 62> (1 —+ 63> = 1 + e+ €y +e3+eey+ ees+ 8361/ + ejexes

scalar vector ~~ pseudo-scalar
bivector

The result is an 8 element algebra. The elements consist of a scalar, 3 unit vectors that
define lines, 3 bivectors that define oriented planes and a trivector e = e;eses that
corresponds to a volume. It has the property ee = —1 and is called a pseudo-scalar.
It also changes sign under inversion since (—e;) (—e3) (—e3) = —ejeqes.

Note that the unit bivectors anticommute. For example, (e1ez) (eze3) = (eze1e3€2) =
— (ege3) (e1€2). In this sense, they behave like vectors; however, their squares are —1.
For example, e;ere;e; = —ejejezey = —1.

When negative values for each of the generators are included, the 16 elements form
a group. Define, e = ejeqe;.

Note that the associative product of e with a bivector is a vector. For example:

eejey — ejegeze ey — egezey — e3.
Therefore, a general bivector

B = eje; B + ese3Bos + eze Bs;
may be written

B = e[—e(eje;Bis + eye3By3 + eze B
B = e(e3Bis + €1 By +e3Bs;)

Since ee; = eje,, ee = ege3, ee; = ege;. €2 = —1. Thus B = ev, where v is a
vector.

A linear combination of the elements of the algebra with arbitrary scalar multipliers,
real or complex, is called a multivector. Thus, a space-like multivector may be written

M=S+v+ ev—l—S’elegeg

We now form the direct product of 2 vectors and express the result in terms of the
vector components: uv = (uv + vu) /2 + (uv — vu) /2
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Express the vectors u, v in terms of e, e;, e3

vu =
uv =
1
Thus, 3 (vu+uv) =
1
and 3 (vu—uv) =

(vlel + voeq + U3€3) (u1e1 + ugeq + U393)
V1U1 + ViUgs€e1€s + Vau1€9€1 + Valo + VilUzees
+U3uU1€3€1 + V3U3 + VaUz€oe3 + UslUsC3eo
V1U] + UV 1€9€1 + U V2€e1€9 + Vollo + U3Vi1€e3€q

+ujvseres + vsus + usvseses + Usvzeses

Veu=—uvU + VU + Uslusg

vAu

1
5[’01162 (9182 — egel) + vius (e1e3 — egel)

+vousz (€2e3 — e3es) + uivy (€167 — €2€y)

+uyv3 (e1e3 — egel) + UgV3 <8283 — egeg)]

17

(v1us — uivy) e1e2 + (V1ug — U v3) er1es + (Vauz — UsV3) €g€es

The latter may be written

vV Au = ejexe;[(viuy — u1vz) €3 + (vsug — viug) €z + (vaus — ugvs) €]

The Gibbs cross product is

vV Xu=e (UQUg — U3U2) + e (U3U1 — U3U1) + e3 (UIUQ — Ulvg)

Therefore,

vAu=—-e(vxu) or e(VAu)=vxu e = ejeze; ee = —1

where v x u is the Gibbs vector product.

Thus, the quantity e = e;ese3 times the wedge product of 2 vectors defines a vector
perpendicular to the plane of the 2 vectors. The wedge product of 2 vectors is the
sum of 3 bivectors, that is, 3 directed planes'. In 4 dimensions, it would be the sum
of 6 bivectors or 6 directed planes. Thus Clifford Algebra is a more general geometric

IThe “direction” of a directed plane is defined by e; X es where looking down ej rotates 90° CC to define a
direction perpendicular to ejes in the direction of a right hand screw turning from e; to ez, the usual right hand

coordinate system.
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algebra than vector analysis, that is, the Gibbs algebra since the Gibbs cross product
in 4 dimensions and higher is not defined.
Direct Product of (vec)(biv)

(vie1 + voey + vses) (Brzere; + Bajese; + Bazeszes)
= wvi1Biaey — v1B31e3 + vy Bazereqes
—vaB1ze; + vaB3ie1eze3 + vy Bazes
+uvzBraeiesez + v3Bs1e) — v3Bazey
= (v3Bs1 — v2B12) €1 + (v1Bia — v3Bag) €3 + (V2 Bz — v1B31) €3
+ (v1Bag + v B3y + v3B12) e1eze;3
= vAB+veB=BXxv-+eee;(veB)

3.5 Rotation of Vectors

Clifford Algebra provides a simple operator for rotating vectors. To obtain this oper-
ator we first find a procedure for reflecting a vector b in a plane (mirror) containing
another vector a. The mirror is perpendicular to the plane of a and b. Fig. 3.2a. The
inverse of a vector is defined by a~'a = 1. If a is a unit vector defined by aa = 1,

then a—! = a. The reflection of b through a to obtain b’ is achieved by forming the
combination

b =a 'ba= a’lb”a —a'bja= aflabH +alab, = b+ by
ab, = —b a by anticommutativity of orthogonal vectors in Clifford algebra.

To rotate a vector by an angle ¢ draw 2 vectors a and b separated by angle /2
as shown in Fig. 3.2a. a and b may be unit vectors. We wish to rotate vector
v into vector v/. Let vector v make an angle §; with a where ; < . Reflect
v through angle #; so that it becomes vector v”. Reflect v/ in b through angle
0y = ¢/2—0;. The net reflection of v is then through an angle 20, +2 (¢/2 — 61) = .
Mathematically, the two reflections are described by

" = alva (3.3)
v = b v'b
Substituting the result of the first reflection into the second reflection
v/ = b l'alvab
v/ = bavab (3.5)
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Fig. 3.2

It is convenient to let a = e; and to express b in terms of e; and the unit vector
e, perpendicular to e;. Let /2 be the angle between e; and b, where ¢ is the angle
through which we wish to rotate the vector v.

Thus,

b =ejcosp/2 and b, = e;sinp/2
and therefore,
e1b =e; (e1cosp/2+ eysinp/2) = cosp/2 + ejeysin /2 (3.6)
which can be written
e b = e®°2%/2 gince (e1e2) (e1€2) = —1
Likewise,
be; = (e1cos /2 + ey sin p/2) e, = cos /2 — ejeysin /2 = e c162¢/2 (3.7)
Substituting these expressions in Eq. (3.5), we obtain
v = e 1029/ 2ygci02¢/2 (3.8)

Eq. (3.8) specifies a counter clockwise rotation of v through an angle ¢ about axis
ez perpendicular to the plane of e; and e,. To rotate the vector v clockwise through
©, change ¢ to —p in the above expressions.

The bilateral operators in Eq. (3.8) may be replaced by the unilateral operator

VI — e—eleztp/Qveelech/Q — e—elechv (39)
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when v lies in the plane of eje;. Thus, e 2% operating left to right on v rotates
it at an angle ¢ counter-clockwise about e;. €°1°¥ operating right to left does the
same. To rotate clockwise, change the sign of ¢. To justify Eq. (3.9), use Eq. (3.8)
to rotate the vector v = v,e; + vy e, into v/ = vie; + v;eg

Consider
viee®®¥/2 — g, (cos /2 + ereysin/2) = vie [cos p/2 + ejese; (sinp/2) eq]
= (cosp/2 + ejerere; sing/2) vie; = (cosp/2 — ejezs8in v /2) vieg
e_ele2¢/2’01€1
Likewise vyegeele?‘p/2 = e’ele%"/%yeg
2 - 2
So (ve€1 + vyeg) ee1029/2 = ee1e2¢/2 (y o)ty ey)
Therefore e °1°2¢/2yee1e2¢/2 — g e1e2¢/2g=C1020/2(y) o, 4 vy€3) = e e1ev/2g—ereap/2y,

_ !
e ¥y =v =vle + v;eg

As an example, let us use Eq. (3.9) to rotate counterclockwise through an angle
 a vector X = eja cos a + esa sin o, making an angle a with respect to the e; axis.
This will yield two trigonometric addition formulas.

!

X = e °°%x =e %% (ejacosa + exasina)
= ejacosa(cosp — ejexsing) + exasin o (cosp — eje;sin @)
= alep (cosacosp — sinasin p) + e, (cos asin ¢ + sin a cos )]
eracos (a + @) + exasin (o + ¢)
Thus

cos(a+¢) = cosacosp —sinasing

sin (v + ) = cosasinp + sinacos

If a=0, x'=a(ejcosp+eysingp)
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To rotate an arbitrary vector S counterclockwise through an angle ¢ and whose
end points are specified by R; and Ry, it is necessary to rotate the two vectors
defining the end points of S through the angle ¢. Thus by Fig. 3.3, one has

Ri+S = R, S=R;,—R;
R/+S = R, S =R,-R,
R, = e ©°R,
R, = e “*¥R,
Ry~ R, = S —e " (R,—Ry) = e @

S = e 1S

To verify that the scalar product is invariant, that is, S’- S’ =S - S, form

S-S = e C1Ge 10 = ¢ CI%2¢e1¥S . S

Thus S? = §?

The rotation of a multivector about es is by definition the rotation about ez of the
individual vectors that constitute the multivector. To rotate a multivector M about
e counterclockwise through an angle ¢ about e, form

!

M = L 'ML
L = ee1e2<p/2

It is clear that we can always sandwich e ®1®2¢/2g®1®2¢/2 — | between the elements
of a multivector. For example, for the rotation of a bivector vu

e—e1e2¢/2vuee1e2w/2 _ e—e1e2@/2vee1egap/2e—e1e2@/2uee1e2tp/2

o
= vu

3.6 Rotation about an Arbitrary Axis n

We now show that the rotation of a vector v through an angle ¢ about an arbitrary
axis specified by the unit vector n is given by:

v/ = e on¢/2yeene/? (3.10)
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Fig. 3.4

To obtain this result, draw a plane through the origin and perpendicular to n.
Decompose v into a component v perpendicular to n and a component an = vjn
parallel to n. Let €] and €/, through the origin define two orthogonal axes in the
plane. The rotation through an angle ¢ of the component u perpendicular to n is
given by

ol ]
V| = e 1%2¥/2y | e®1%2¢/2 (3.11)
e} and e}, can be specified in terms of direction cosines with respect to the axes
€1,€2 €e3.
Then
!/
eje, = (ejcosag+ egcos Py + e3cosyy) (ercosas + €;cos fy + e3cos7,)

= €1€] COS (x| COS (g + €€ COS [31 COS 35 + €3€3 COS Y; COS Y,
+eje; (cos g cos B, — cos ap cos 1) + e1e3 (CoS ary COS Yy — COS (rg COS Y1)

+eses (cos B cos vy — cos By cos )
Since e; and e, are orthogonal, the scalar product is zero:
/ /! 5 6 . O
€, - €5 = COS (¥1 COS (g + COS D COS Py + COS Y1 COS Yy =
The unit vector n is given by

n=e]| xe,=—e(e]Aey) =e(coscosy, — cosByc087)



3.6 Rotation about an Arbitrary Axis n 23

+es (cos Y, cos g — oS (g COS7Y4) + €3 (cos ay cos By — cos ag cos )
= €1 CcoSa + €5 cos J + ez cosy

where «, [3,and ~ are the direction cosines of n. e = e;ese;. The product €€, may
then be written

eje), = ejeycosy + eje;cos S + exe3cosa
= ejese; (e cosa+ ey cos 5+ e3cosy)
= e€e1€9e3Nl — €en
Note that e|ese3n — nejeses
Thus, ejese3n = e€jese3n€1€2€3N = €1€363€1€2e3n° = (e1e2e3)2 n®=-1
Since, nn = 1
nn = (ejcosa+ eycosf+ e;cosy) (e cosa+ eycosf+ e;cosy)

= eje; cos’ a + ezey cos? B+ eses cos® y + (ejey + ege;) cos acos B
+ (e1e3 + eze;) cosy + (ezes + ezeq) cos 8

= cos’a +cos? B+ cos’y =1

Note that n = e ©192930%/2pge1e20300/2
= (cosf — ensin f) n (cosf — ensin f)
2 2 2 2
= n<cos£—ensin£> (cosf —ensinf> =n
2 2 2 2
Thus, for a = v-n=av|
v = e—emp/2 (CI,I’I + VJ_) eenga/2 _ e—encp/2aneencp/2 + eengo/2VJ_een<p/2

V. = an+e v, =av+e v, (3.12)



24 3. ASSOCIATIVE OR DIRECT PRODUCT. ROTATION OF VECTORS



